Nanogold-plasmon-resonance-based glucose sensing.

نویسندگان

  • Kadir Aslan
  • Joseph R Lakowicz
  • Chris D Geddes
چکیده

Noble metal nanoparticles are well known for their strong interactions with light through the resonant excitations of the collective oscillations of the conduction electrons on the particles, the so-called surface plasmon resonances. The close proximity of two nanoparticles is known to result in a red-shifted resonance wavelength peak, due to near-field coupling. We have subsequently employed this phenomenon and developed a new approach to glucose sensing, which is based on the aggregation and disassociation of 20-nm gold particles and the changes in plasmon absorption induced by the presence of glucose. High-molecular-weight dextran-coated nanoparticles are aggregated with concanavalin A (Con A), which results in a significant shift and broadening of the gold plasmon absorption. The addition of glucose competitively binds to Con A, reducing gold nanoparticle aggregation and therefore the plasmon absorption when monitored at a near-red arbitrary wavelength. We have optimized our plasmonic-type glucose nanosensors with regard to particle stability, pH effects, the dynamic range for glucose sensing, and the observation wavelength to be compatible with clinical glucose requirements and measurements. In addition, by modifying the amount of dextran or Con A used in nanoparticle fabrication, we can to some extent tune the glucose response range, which means that a single sensing platform could potentially be used to monitor microM --> mM glucose levels in many physiological fluids, such as tears, blood, and urine, where the glucose concentrations are significantly different.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering.

Gold colloids are well known to display strong plasmon absorption bands due to electron oscillations induced by the incident light. When the colloids are in proximity, the plasmon absorption bands are often perturbed. This has enabled us recently to successfully develop a glucose sensing platform based on the disassociation of dextran-coated gold colloids, cross-linked with Con A, by glucose. H...

متن کامل

Hydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd

Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...

متن کامل

Optimization of Sensitivity and Stability of Gold/Silver bi-Layer Thin Films Used in Surface Plasmon Resonance Chips

The aim of this study is experimental assay of sensitivity and stability of a bimetallic silver/gold SPR sensor chip. This chip utilizes the sensitivity of the silver and the stability of the gold. Moreover, the Silver layer (instead of usual Cr or Ti layer) was used as an adhesive intermediate layer between the Gold layer and the glass substrate. The optimization of the Gold/Silver thickness u...

متن کامل

Biopharmaceutical applications of nanogold.

The application of nanogold in biopharmaceutical field is reviewed in this work. The properties of nanogold including nanogold surface Plasmon absorption and nanogold surface Plasmon light scattering are illustrated. The physical, chemical, biosynthesis methods of nanogold preparation are presented. Catalytic properties as well as biomedical applications are highlighted as one of the most impor...

متن کامل

Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.

We experimentally demonstrate efficient extinction spectroscopy of single plasmonic gold nanorods with exquisite fidelity (SNR > 20dB) and high efficiency light coupling (e. g., 9.7%) to individual plasmonic nanoparticles in an integrated platform. We demonstrate chip-scale integration of lithographically defined plasmonic nanoparticles on silicon nitride (Si3N4) ridge waveguides for on-chip lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 330 1  شماره 

صفحات  -

تاریخ انتشار 2004